Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
PLoS Pathog ; 20(4): e1012134, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38603762

RESUMO

Monoclonal antibodies (mAbs) are an important class of antiviral therapeutics. MAbs are highly selective, well tolerated, and have long in vivo half-life as well as the capacity to induce immune-mediated virus clearance. Their activities can be further enhanced by integration of their variable fragments (Fvs) into bispecific antibodies (bsAbs), affording simultaneous targeting of multiple epitopes to improve potency and breadth and/or to mitigate against viral escape by a single mutation. Here, we explore a bsAb strategy for generation of pan-ebolavirus and pan-filovirus immunotherapeutics. Filoviruses, including Ebola virus (EBOV), Sudan virus (SUDV), and Marburg virus (MARV), cause severe hemorrhagic fever. Although there are two FDA-approved mAb therapies for EBOV infection, these do not extend to other filoviruses. Here, we combine Fvs from broad ebolavirus mAbs to generate novel pan-ebolavirus bsAbs that are potently neutralizing, confer protection in mice, and are resistant to viral escape. Moreover, we combine Fvs from pan-ebolavirus mAbs with those of protective MARV mAbs to generate pan-filovirus protective bsAbs. These results provide guidelines for broad antiviral bsAb design and generate new immunotherapeutic candidates.

2.
Water Environ Res ; 96(4): e11017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565318

RESUMO

This study explored the implementation of mainstream partial denitrification with anammox (PdNA) in the second anoxic zone of a wastewater treatment process in an integrated fixed film activated sludge (IFAS) configuration. A pilot study was conducted to compare the use of methanol and glycerol as external carbon sources for an IFAS PdNA startup, with a goal to optimize nitrogen removal while minimizing carbon usage. The study also investigated the establishment of anammox bacteria on virgin carriers in IFAS reactors without the use of seeding, and it is the first IFAS PdNA startup to use methanol as an external carbon source. The establishment of anammox bacteria was confirmed in both reactors 102 days after startup. Although the glycerol-fed reactor achieved a higher steady-state maximum ammonia removal rate because of anammox bacteria (1.6 ± 0.3 g/m2/day) in comparison with the methanol-fed reactor (1.2 ± 0.2 g/m2/day), both the glycerol- and methanol-fed reactors achieved similar average in situ ammonia removal rates of 0.39 ± 0.2 g/m2/day and 0.40 ± 0.2 g/m2/day, respectively. Additionally, when the upstream ammonia versus NOx (AvN) control system maintained an ideal ratio of 0.40-0.50 g/g, the methanol-fed reactor attained a lower average effluent TIN concentration (3.50 ± 1.2 mg/L) than the glycerol-fed reactor (4.43 ± 1.6 mg/L), which was prone to elevated nitrite concentrations in the effluent. Overall, this research highlights the potential for PdNA in IFAS configurations as an efficient and cost-saving method for wastewater treatment, with methanol as a viable carbon source for the establishment of anammox bacteria. PRACTITIONER POINTS: Methanol is an effective external carbon source for an anammox startup that avoids the need for costly alternative carbon sources. The methanol-fed reactor demonstrated higher TIN removal compared with the glycerol-fed reactor because of less overproduction of nitrite. Anammox bacteria was established in an IFAS reactor without seeding and used internally stored carbon to reduce external carbon addition. Controlling the influent ammonia versus NOx (AvN) ratio between 0.40 and 0.50 g/g allowed for low and stable TIN effluent conditions.


Assuntos
Compostos de Amônio , Esgotos , Esgotos/microbiologia , Amônia , Desnitrificação , Metanol , Glicerol , Nitritos , Projetos Piloto , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Bactérias , Nitrogênio , Oxirredução
3.
Emerg Infect Dis ; 30(4): 817-821, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526320

RESUMO

Orthohantaviruses cause hantavirus cardiopulmonary syndrome; most cases occur in the southwest region of the United States. We discuss a clinical case of orthohantavirus infection in a 65-year-old woman in Michigan and the phylogeographic link of partial viral fragments from the patient and rodents captured near the presumed site of infection.


Assuntos
Infecções por Hantavirus , Orthohantavírus , Feminino , Humanos , Idoso , Michigan/epidemiologia , Filogeografia , Síndrome
4.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496658

RESUMO

Crimean-Congo hemorrhagic fever virus can cause lethal disease in humans yet there are no approved medical countermeasures. Viral glycoprotein GP38, unique to Nairoviridae, is a target of protective antibodies, but extensive mapping of the human antibody response to GP38 has not been previously performed. Here, we isolated 188 GP38-specific antibodies from human survivors of infection. Competition experiments showed that these antibodies bind across five distinct antigenic sites, encompassing eleven overlapping regions. Additionally, we reveal structures of GP38 bound with nine of these antibodies targeting different antigenic sites. Although GP38-specific antibodies were non-neutralizing, several antibodies were found to have protection equal to or better than murine antibody 13G8 in two highly stringent rodent models of infection. Together, these data expand our understanding regarding this important viral protein and inform the development of broadly effective CCHFV antibody therapeutics.

5.
Antiviral Res ; 225: 105851, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458540

RESUMO

Currently, there are two approved vaccine regimens designed to prevent Ebola virus (EBOV) disease (EVD). Both are virus-vectored, and concerns about cold-chain storage and pre-existing immunity to the vectors warrant investigating additional vaccine strategies. Here, we have explored the utility of adjuvanted recombinant glycoproteins (GPs) from ebolaviruses Zaire (EBOV), Sudan (SUDV), and Bundibugyo (BDBV) for inducing antibody (Ab) and T cell cross-reactivity. Glycoproteins expressed in insect cells were administered to C57BL/6 mice as free protein or bound to the surface of liposomes, and formulated with toll-like receptor agonists CpG and MPLA (agonists for TLR 9 and 4, respectively), with or without the emulsions AddaVax or TiterMax. The magnitude of Ab cross-reactivity in binding and neutralization assays, and T cell cross-reactivity in antigen recall assays, correlated with phylogenetic relatedness. While most adjuvants screened induced IgG responses, a combination of CpG, MPLA and AddaVax emulsion ("IVAX-1") was the most potent and polarized in an IgG2c (Th1) direction. Breadth was also achieved by combining GPs into a trivalent (Tri-GP) cocktail with IVAX-1, which did not compromise antibody responses to individual components in binding and neutralizing assays. Th1 signature cytokines in T cell recall assays were undetectable after Tri-GP/IVAX-1 administration, despite a robust IgG2c response, although administration of Tri-GP on lipid nanoparticles in IVAX-1 elevated Th1 cytokines to detectable levels. Overall, the data indicate an adjuvanted trivalent recombinant GP approach may represent a path toward a broadly reactive, deployable vaccine against EVD.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Polissorbatos , Esqualeno , Animais , Camundongos , Anticorpos Antivirais , Sudão , Filogenia , Anticorpos Neutralizantes , Camundongos Endogâmicos C57BL , Glicoproteínas , Adjuvantes Imunológicos , Linfócitos T , Citocinas
6.
Nat Commun ; 15(1): 1553, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378768

RESUMO

Ever-evolving SARS-CoV-2 variants of concern (VOCs) have diminished the effectiveness of therapeutic antibodies and vaccines. Developing a coronavirus vaccine that offers a greater breadth of protection against current and future VOCs would eliminate the need to reformulate COVID-19 vaccines. Here, we rationally engineer the sequence-conserved S2 subunit of the SARS-CoV-2 spike protein and characterize the resulting S2-only antigens. Structural studies demonstrate that the introduction of interprotomer disulfide bonds can lock S2 in prefusion trimers, although the apex samples a continuum of conformations between open and closed states. Immunization with prefusion-stabilized S2 constructs elicits broadly neutralizing responses against several sarbecoviruses and protects female BALB/c mice from mouse-adapted SARS-CoV-2 lethal challenge and partially protects female BALB/c mice from mouse-adapted SARS-CoV lethal challenge. These engineering and immunogenicity results should inform the development of next-generation pan-coronavirus therapeutics and vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Animais , Humanos , Camundongos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Antígenos Virais/genética , Camundongos Endogâmicos BALB C , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
7.
Viruses ; 16(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38400039

RESUMO

SARS-CoV-2 infection remains a global burden. Despite intensive research, the mechanism and dynamics of early viral replication are not completely understood, such as the kinetics of the formation of genomic RNA (gRNA), sub-genomic RNA (sgRNA), and replication centers/organelles (ROs). We employed single-molecule RNA-fluorescence in situ hybridization (smRNA-FISH) to simultaneously detect viral gRNA and sgRNA and immunofluorescence to detect nsp3 protein, a marker for the formation of RO, and carried out a time-course analysis. We found that single molecules of gRNA are visible within the cytoplasm at 30 min post infection (p.i.). Starting from 2 h p.i., most of the viral RNA existed in clusters/speckles, some of which were surrounded by single molecules of sgRNA. These speckles associated with nsp3 protein starting at 3 h p.i., indicating that these were precursors to ROs. Furthermore, RNA replication was asynchronous, as cells with RNA at all stages of replication were found at any given time point. Our probes detected the SARS-CoV-2 variants of concern, and also suggested that the BA.1 strain exhibited a slower rate of replication kinetics than the WA1 strain. Our results provide insights into the kinetics of SARS-CoV-2 early post-entry events, which will facilitate identification of new therapeutic targets for early-stage replication to combat COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Replicação do RNA , Hibridização in Situ Fluorescente/métodos , Espécies Reativas de Oxigênio/metabolismo , RNA Subgenômico , RNA Guia de Sistemas CRISPR-Cas , Imunofluorescência , Proteínas/metabolismo , RNA Viral/genética , RNA Viral/metabolismo
8.
J Gen Virol ; 105(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305775

RESUMO

Filoviridae is a family of negative-sense RNA viruses with genomes of about 13.1-20.9 kb that infect fish, mammals and reptiles. The filovirid genome is a linear, non-segmented RNA with five canonical open reading frames (ORFs) that encode a nucleoprotein (NP), a polymerase cofactor (VP35), a glycoprotein (GP1,2), a transcriptional activator (VP30) and a large protein (L) containing an RNA-directed RNA polymerase (RdRP) domain. All filovirid genomes encode additional proteins that vary among genera. Several filovirids (e.g., Ebola virus, Marburg virus) are pathogenic for humans and highly virulent. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Filoviridae, which is available at www.ictv.global/report/filoviridae.


Assuntos
Ebolavirus , Marburgvirus , Rhabdoviridae , Animais , Humanos , Ebolavirus/genética , Rhabdoviridae/genética , Filogenia , Genoma Viral , Replicação Viral , Mamíferos/genética
9.
Bioresour Technol ; 393: 130069, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000643

RESUMO

In this study, two arrested anaerobic digestion bioreactors, fed with food waste, operated under different hydraulic retention times (HRTs) exhibited similar total volatile fatty acid (VFA) yields (p = 0.09). 16S rRNA gene sequencing revealed distinct microbial structure (p = 0.02) at the two HRTs. However, between the two HRTs, there were no differences in potential (DNA) and extant (mRNA) functionality for the production of acetic (AA)-, propionic (PA)-, butyric (BA)- and valeric-acid (VA), as indicated by the metagenome and metatranscriptome data, respectively. The highest potential and extant functionality for PA production in the reactor microbiomes mirrored the highest abundance of PA in the reactor effluents. Meta-omics analysis of BA production indicated possible metabolite exchange across different community members. Notably, the basis for similar VFA production performance observed under the HRTs tested lies in the community-level redundancy in convergent acidification functions and pathways, rather than trends in community-level structure alone.


Assuntos
Eliminação de Resíduos , Anaerobiose , Alimentos , RNA Ribossômico 16S/genética , Reatores Biológicos , Ácidos Graxos Voláteis/metabolismo , Metano
10.
Sci Total Environ ; 905: 166767, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37660814

RESUMO

Removal of recalcitrant lignin from wastewater remains a critical bottleneck in multiple aspects relating to microbial carbon cycling ranging from incomplete treatment of biosolids during wastewater treatment to limited conversion of biomass feedstock to biofuels. Based on previous studies showing that the white rot fungus Phanerochaete chrysosporium and Fenton chemistry synergistically degrade lignin, we sought to determine optimum levels of Fenton addition and the mechanisms underlying this synergy. We tested the extent of degradation of lignin under different ratios of Fenton reagents and found that relatively low levels of H2O2 and Fe(II) enhanced fungal lignin degradation, achieving 80.4 ± 1.61 % lignin degradation at 1.5 mM H2O2 and 0.3 mM Fe(II). Using a combination of whole-transcriptome sequencing and iron speciation assays, we determined that at these concentrations, Fenton chemistry induced the upregulation of 80 differentially expressed genes in P. ch including several oxidative enzymes. This study underlines the importance of non-canonical, auxiliary lignin-degrading pathways in the synergy between white rot fungi and Fenton chemistry in lignin degradation. We also found that, relative to the abiotic control, P. ch. increases the availability of Fe(II) for the production of hydroxyl radicals in the Fenton reaction by recycling Fe(III) (p < 0.001), decreasing the Fe(II) inputs necessary for lignin degradation via the Fenton reaction.


Assuntos
Phanerochaete , Phanerochaete/metabolismo , Lignina/metabolismo , Peróxido de Hidrogênio/metabolismo , Compostos Férricos/metabolismo , Indução Enzimática , Ferro/metabolismo , Compostos Ferrosos/metabolismo
12.
J Gen Virol ; 104(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37622664

RESUMO

In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Assuntos
Vírus de RNA de Sentido Negativo , Vírus de RNA , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética
13.
Arch Virol ; 168(8): 220, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537381

RESUMO

The International Committee on Taxonomy of Viruses (ICTV) Filoviridae Study Group continues to prospectively refine the established nomenclature for taxa included in family Filoviridae in an effort to decrease confusion of genus, species, and virus names and to adhere to amended stipulations of the International Code of Virus Classification and Nomenclature (ICVCN). Recently, the genus names Ebolavirus and Marburgvirus were changed to Orthoebolavirus and Orthomarburgvirus, respectively. Additionally, all established species names in family Filoviridae now adhere to the ICTV-mandated binomial format. Virus names remain unchanged and valid. Here, we outline the revised taxonomy of family Filoviridae as approved by the ICTV in April 2023.


Assuntos
Ebolavirus , Filoviridae , Marburgvirus , Vírus
15.
Nat Commun ; 14(1): 4454, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488123

RESUMO

Andes virus (ANDV) and Sin Nombre virus (SNV) are the etiologic agents of severe hantavirus cardiopulmonary syndrome (HCPS) in the Americas for which no FDA-approved countermeasures are available. Protocadherin-1 (PCDH1), a cadherin-superfamily protein recently identified as a critical host factor for ANDV and SNV, represents a new antiviral target; however, its precise role remains to be elucidated. Here, we use computational and experimental approaches to delineate the binding surface of the hantavirus glycoprotein complex on PCDH1's first extracellular cadherin repeat domain. Strikingly, a single amino acid residue in this PCDH1 surface influences the host species-specificity of SNV glycoprotein-PCDH1 interaction and cell entry. Mutation of this and a neighboring residue substantially protects Syrian hamsters from pulmonary disease and death caused by ANDV. We conclude that PCDH1 is a bona fide entry receptor for ANDV and SNV whose direct interaction with hantavirus glycoproteins could be targeted to develop new interventions against HCPS.


Assuntos
Doenças Transmissíveis , Orthohantavírus , Vírus de RNA , Animais , Cricetinae , Mutação Puntual , Protocaderinas , Caderinas , Mesocricetus , Síndrome
16.
Sci Transl Med ; 15(700): eadg1855, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37315110

RESUMO

Emerging rodent-borne hantaviruses cause severe diseases in humans with no approved vaccines or therapeutics. We recently isolated a monoclonal broadly neutralizing antibody (nAb) from a Puumala virus-experienced human donor. Here, we report its structure bound to its target, the Gn/Gc glycoprotein heterodimer comprising the viral fusion complex. The structure explains the broad activity of the nAb: It recognizes conserved Gc fusion loop sequences and the main chain of variable Gn sequences, thereby straddling the Gn/Gc heterodimer and locking it in its prefusion conformation. We show that the nAb's accelerated dissociation from the divergent Andes virus Gn/Gc at endosomal acidic pH limits its potency against this highly lethal virus and correct this liability by engineering an optimized variant that sets a benchmark as a candidate pan-hantavirus therapeutic.


Assuntos
Anticorpos Antivirais , Orthohantavírus , Humanos , Benchmarking , Anticorpos Amplamente Neutralizantes , Sequência Conservada
17.
J Infect Dis ; 228(Suppl 7): S691-S700, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37288609

RESUMO

Filoviruses, including ebolaviruses and marburgviruses, can cause severe and often fatal disease in humans. Over the past several years, antibody therapy has emerged as a promising strategy for the treatment of filovirus disease. Here, we describe 2 distinct cross-reactive monoclonal antibodies (mAbs) isolated from mice immunized with recombinant vesicular stomatitis virus-based filovirus vaccines. Both mAbs recognized the glycoproteins of multiple different ebolaviruses and exhibited broad but differential in vitro neutralization activities against these viruses. By themselves, each mAb provided partial to full protection against Ebola virus in mice, and in combination, the mAbs provided 100% protection against Sudan virus challenge in guinea pigs. This study identified novel mAbs that were elicited through immunization and able to provide protection from ebolavirus infection, thus enriching the pool of candidate therapeutics for treating Ebola disease.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Animais , Cobaias , Camundongos , Anticorpos Monoclonais , Terapia Combinada de Anticorpos , Anticorpos Neutralizantes , Anticorpos Antivirais
18.
Water Environ Res ; 95(5): e10877, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37144726

RESUMO

This study successfully revealed the importance of probe reliability and sensitivity with ion sensitive electrode (ISE) probes on achieving high partial denitrification (PdN) efficiency; and decreasing carbon overdosing events that cause the decline of microbial populations and performance of PdNA. In a mainstream integrated hybrid granule-floc system, an average PdN efficiency of 76% was achieved with acetate as the carbon source. Thauera was identified as the dominant PdN species; its presence in the system was analogous to instrumentation reliability and PdN selection and was not a consequence of bioaugmentation. Up to 27-121 mg total inorganic nitrogen/L/d, an equivalent of 18-48% of the overall total inorganic nitrogen removed, was achieved through the PdNA pathway. Candidatus Brocadia was the main anoxic ammonium oxidizing bacteria species that was seeded from sidestream and enriched and retained in the mainstream system with observed growth rates of 0.04-0.13 day-1 . Moreover, there was no direct negative impact of methanol's use for post-polishing on anoxic ammonium oxidizing bacteria activity and growth. PRACTITIONER POINTS: Stress testing with ISE sensors revealed the importance of probe reliability and sensitivity on PdN selection and PdNA performance. Up to 121 mg TIN/L/d was achieved via PdNA in a mainstream suspended hybrid granule-floc partial denitrification-anammox (PdNA) system. Candidatus Brocadia was the dominant AnAOB species with observed growth rates of 0.04-0.13 day-1. There was no direct negative impact of methanol's use for post-polishing on AnAOB activity and growth.


Assuntos
Compostos de Amônio , Desnitrificação , Águas Residuárias , Oxidação Anaeróbia da Amônia , Metanol/metabolismo , Reprodutibilidade dos Testes , Reatores Biológicos/microbiologia , Oxirredução , Compostos de Amônio/metabolismo , Bactérias/metabolismo , Nitrogênio/metabolismo , Esgotos/microbiologia
19.
bioRxiv ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36891288

RESUMO

Durable serological memory following vaccination is critically dependent on the production and survival of long-lived plasma cells (LLPCs). Yet, the factors that control LLPC specification and survival remain poorly resolved. Using intra-vital two-photon imaging, we find that in contrast to most plasma cells in the bone marrow, LLPCs are uniquely sessile and organized into clusters that are dependent on April, an important survival factor. Using deep, bulk RNA sequencing, and surface protein flow-based phenotyping, we find that LLPCs express a unique transcriptome and proteome compared to bulk PCs, fine tuning expression of key cell surface molecules, CD93, CD81, CXCR4, CD326, CD44 and CD48, important for adhesion and homing, and phenotypically label LLPCs within mature PC pool. Conditional deletion of Cxcr4 in PCs following immunization leads to rapid mobilization from the BM, reduced survival of antigen-specific PCs, and ultimately accelerated decay of antibody titer. In naïve mice, the endogenous LLPCs BCR repertoire exhibits reduced diversity, reduced somatic mutations, and increased public clones and IgM isotypes, particularly in young mice, suggesting LLPC specification is non-random. As mice age, the BM PC compartment becomes enriched in LLPCs, which may outcompete and limit entry of new PC into the LLPC niche and pool. HIGHLIGHTS: LLPCs have reduced motility and increased clustering in the BMLLPCs accumulate in the BM PC pool, with mouse ageLLPCs have unique surfaceome, transcriptome, and BCR clonalityCXCR4 controls maintenance of PCs and antibody titers.

20.
J Immunol ; 210(5): 595-608, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645344

RESUMO

Both infection and autoimmune disease can disrupt pre-existing Ab titers leading to diminished serological memory, yet the underlying mechanisms are not well understood. In this article, we report that TNF-α, an inflammatory cytokine, is a master regulator of the plasma cell (PC) niche in the bone marrow (BM). Acute rTNF-α treatment depletes previously existing Ab titers after vaccination by limiting PC occupancy or retention in the BM. Consistent with this phenomenon, mice lacking TNF-α signaling have elevated PC capacity in the BM and higher Ab titers. Using BM chimeric mice, we found that PC egress from the BM is regulated in a cell-extrinsic manner, by radiation-resistant cells via TNF-α receptor 1 signaling, leading to increased vascular permeability and CD138 downregulation on PCs. PC motility and egress in the BM are triggered within 6 h of recombinant TNF-α treatment. In addition to promoting egress, TNF-α signaling also prevented re-engraftment into the BM, leading to reduced PC survival. Although other inflammatory stimuli can promote PC egress, TNF-α signaling is necessary for limiting the PC capacity in the BM. Collectively, these data characterize how TNF-α-mediated inflammation attenuates the durability of serological memory and shapes the overall size and composition of the Ab-secreting cell pool in the BM.


Assuntos
Medula Óssea , Fator de Necrose Tumoral alfa , Camundongos , Animais , Plasmócitos , Transdução de Sinais , Células da Medula Óssea , Fatores Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...